Study of Finite Field over Elliptic Curve: Arithmetic Means
نویسندگان
چکیده
Public key cryptography systems are based on sound mathematical foundations that are designed to make the problem hard for an intruder to break into the system. Number theory and algebraic geometry, namely the theory of elliptic curves defined over finite fields, has found applications in cryptology. The basic reason for this is that elliptic curves over finite fields provide an inexhaustible supply of finite abelian groups which, even when large, are amenable to computation because of their rich structure. The first level is the mathematical background concerning the needed tools from algebraic geometry and arithmetic. This paper introduces the elementary algebraic structures and the basic facts on number theory in finite fields. It includes the minimal amount of mathematical background necessary to understand the applications to cryptology. Elliptic curves are intimately connected with the theory of modular forms, in more than one ways. The paper gives a brief introduction to modular arithmetic, which is the core arithmetic of almost all public key algorithms. . The ultimate goal of the paper is to completely understand the structure of the points on the elliptic curve over any field F and being able to find them.
منابع مشابه
Fast Algorithms for Elliptic Curve Cryptosystems over Binary Finite Field
In the underlying finite field arithmetic of an elliptic curve cryptosystem, field multiplication is the next computational costly operation other than field inversion. We present two novel algorithms for efficient implementation of field multiplication and modular reduction used frequently in an elliptic curve cryptosystem defined over GF (2). We provide a complexity study of the two algorithm...
متن کاملECE 842 Report Implementation of Elliptic Curve Cryptography
The aim of this report is to illustrate the issues in implementing a practical elliptic curve cryptographic system. Before doing the implementation, I will review group operation defined on elliptic curve over finite field. From that perspective, the efficiency of elliptic curve cryptographic system can be improved in two steps. The first step is to find a good representation of field element s...
متن کاملAcceleration of Finite Field Arithmetic with an Application to Reverse Engineering Genetic Networks
Finite field arithmetic plays an important role in a wide range of applications. This research is originally motivated by an application of computational biology where genetic networks are modeled by means of finite fields. Nonetheless, this work has application in various research fields including digital signal processing, error correcting codes, Reed-Solomon encoders/decoders, elliptic curve...
متن کاملA Study of Suitability and Effectiveness of Various Implementation Options Of Finite Field Arithmetic on Elliptic Curve Crypto System
389 Abstract—Finite field or Galois field plays an important role in efficient architecture design and implementation of Elliptic curve cryptosystem. A lot of research work is going on in this area since it is suitable for cryptography as well as error correcting codes useful for digital communication, compact disks etc. In this paper we discuss the basic concepts of finite field and its applic...
متن کاملA Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over
The performance of elliptic curve based public key cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. This work describes two generic and scalable architectures of finite field coprocessors, which are implemented within the latest family of Field Programmable System Level Integrated Circuits FPSLIC from Atmel, Inc. The HW architectures are adapted fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012